124 research outputs found

    Mucin Agarose Gel Electrophoresis: Western Blotting for High-molecular-weight Glycoproteins

    Get PDF
    Mucins, the heavily-glycosylated proteins lining mucosal surfaces, have evolved as a key component of innate defense by protecting the epithelium against invading pathogens. The main role of these macromolecules is to facilitate particle trapping and clearance while promoting lubrication of the mucosa. During protein synthesis, mucins undergo intense O-glycosylation and multimerization, which dramatically increase the mass and size of these molecules. These post-translational modifications are critical for the viscoelastic properties of mucus. As a result of the complex biochemical and biophysical nature of these molecules, working with mucins provides many challenges that cannot be overcome by conventional protein analysis methods. For instance, their high-molecular-weight prevents electrophoretic migration via regular polyacrylamide gels and their sticky nature causes adhesion to experimental tubing. However, investigating the role of mucins in health (e.g., maintaining mucosal integrity) and disease (e.g., hyperconcentration, mucostasis, cancer) has recently gained interest and mucins are being investigated as a therapeutic target. A better understanding of the production and function of mucin macromolecules may lead to novel pharmaceutical approaches, e.g., inhibitors of mucin granule exocytosis and/or mucolytic agents. Therefore, consistent and reliable protocols to investigate mucin biology are critical for scientific advancement. Here, we describe conventional methods to separate mucin macromolecules by electrophoresis using an agarose gel, transfer protein into nitrocellulose membrane, and detect signal with mucin-specific antibodies as well as infrared fluorescent gel reader. These techniques are widely applicable to determine mucin quantitation, multimerization and to test the effects of pharmacological compounds on mucins

    Breath detection algorithms affect multiple-breath washout outcomes in pre-school and school age children.

    Get PDF
    BACKGROUND Accurate breath detection is essential for the computation of outcomes in the multiple-breath washout (MBW) technique. This is particularly important in young children, where irregular breathing is common, and the designation of inspirations and expirations can be challenging. AIM To investigate differences between a commercial and a novel breath-detection algorithm and to characterize effects on MBW outcomes in children. METHODS We replicated the signal processing and algorithms used in Spiroware software (v3.3.1, Eco Medics AG). We developed a novel breath detection algorithm (custom) and compared it to Spiroware using 2,455 nitrogen (N2) and 325 sulfur hexafluoride (SF6) trials collected in infants, children, and adolescents. RESULTS In 83% of N2 and 32% of SF6 trials, the Spiroware breath detection algorithm rejected breaths and did not use them for the calculation of MBW outcomes. Our custom breath detection algorithm determines inspirations and expirations based on flow reversal and corresponding CO2 elevations, and uses all breaths for data analysis. In trials with regular tidal breathing, there were no differences in outcomes between algorithms. However, in 10% of pre-school children tests the number of breaths detected differed by more than 10% and the commercial algorithm underestimated the lung clearance index by up to 21%. CONCLUSION Accurate breath detection is challenging in young children. As the MBW technique relies on the cumulative analysis of all washout breaths, the rejection of breaths should be limited. We provide an improved algorithm that accurately detects breaths based on both flow reversal and CO2 concentration

    Control of a Programmed Cell Death Pathway in Pseudomonas aeruginosa by an Antiterminator

    Get PDF
    In Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is switched on in a subset of cells in response to DNA damage and is linked to the virulence of the organism. Here we show that the central regulator of this pathway, AlpA, exerts its effects by acting as an antiterminator rather than a transcription activator. In particular, we present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes in a second newly identified target locus, by recognizing specific DNA sites within the promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic terminators positioned downstream. AlpA thus functions in a mechanistically unusual manner to control the expression of virulence genes in this opportunistic pathogen

    A Self-Lysis Pathway that Enhances the Virulence of a Pathogenic Bacterium

    Get PDF
    In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system

    Simultaneous multiple breath washout and oxygen-enhanced magnetic resonance imaging in healthy adults.

    Get PDF
    Lung function testing and lung imaging are commonly used techniques to monitor respiratory diseases, such as cystic fibrosis (CF). The nitrogen (N2) multiple-breath washout technique (MBW) has been shown to detect ventilation inhomogeneity in CF, but the underlying pathophysiological processes that are altered are often unclear. Dynamic oxygen-enhanced magnetic resonance imaging (OE-MRI) could potentially be performed simultaneously with MBW because both techniques require breathing of 100% oxygen (O2) and may allow for visualisation of alterations underlying impaired MBW outcomes. However, simultaneous MBW and OE-MRI has never been assessed, potentially as it requires a magnetic resonance (MR) compatible MBW equipment. In this pilot study, we assessed whether MBW and OE-MRI can be performed simultaneously using a commercial MBW device that has been modified to be MR-compatible. We performed simultaneous measurements in five healthy volunteers aged 25-35 years. We obtained O2 and N2 concentrations from both techniques, and generated O2 wash-in time constant and N2 washout maps from OE-MRI data. We obtained good quality simultaneous measurements in two healthy volunteers due to technical challenges related to the MBW equipment and poor tolerance. Oxygen and N2 concentrations from both techniques, as well as O2 wash-in time constant maps and N2 washout maps could be obtained, suggesting that simultaneous measurements may have the potential to allow for comparison and visualization of regional differences in ventilation underlying impaired MBW outcomes. Simultaneous MBW and OE-MRI measurements can be performed with a modified MBW device and may help to understand MBW outcomes, but the measurements are challenging and have poor feasibility

    Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in \u3cem\u3eFrancisella tularensis\u3c/em\u3e

    Get PDF
    Host-derived glutathione (GSH) is an essential source of cysteine for the intracellular pathogen Francisella tularensis. In a comprehensive transposon insertion sequencing screen, we identified several F. tularensis genes that play central and previously unappreciated roles in the utilization of GSH during the growth of the bacterium in macrophages. We show that one of these, a gene we named dptA, encodes a proton-dependent oligopeptide transporter that enables growth of the organism on the dipeptide Cys-Gly, a key breakdown product of GSH generated by the enzyme γ-glutamyltranspeptidase (GGT). Although GGT was thought to be the principal enzyme involved in GSH breakdown in F. tularensis, our screen identified a second enzyme, referred to as ChaC, that is also involved in the utilization of exogenous GSH. However, unlike GGT and DptA, we show that the importance of ChaC in supporting intramacrophage growth extends beyond cysteine acquisition. Taken together, our findings provide a compendium of F. tularensis genes required for intracellular growth and identify new players in the metabolism of GSH that could be attractive targets for therapeutic intervention

    Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing

    Get PDF
    PURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs

    A Systematic Approach to Multiple Breath Nitrogen Washout Test Quality

    Get PDF
    Background: Accurate estimates of multiple breath washout (MBW) outcomes require correct operation of the device, appropriate distraction of the subject to ensure they breathe in a manner representative of their relaxed tidal breathing pattern, and appropriate interpretation of the acquired data. Based on available recommendations for an acceptable MBW test, we aimed to develop a protocol to systematically evaluate MBW measurements based on these criteria. Methods: 50MBWtest occasions were systematically reviewed for technical elements and whether the breathing pattern was representative of relaxed tidal breathing by an experienced MBW operator. The impact of qualitative and quantitative criteria on inter-observer agreement was assessed across eight MBW operators (n = 20 test occasions, compared using a Kappa statistic). Results: Using qualitative criteria, 46/168 trials were rejected: 16.6%were technically unacceptable and 10.7% were excluded due to inappropriate breathing pattern. Reviewer agreement was good using qualitative criteria and further improved with quantitative criteria from (κ = 0.53– 0.83%) to (κ 0.73–0.97%), but at the cost of exclusion of further test occasions in this retrospective data analysis. Conclusions: The application of the systematic review improved inter-observer agreement but did not affect reported MBW outcomes

    An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples

    Get PDF
    During the last decade, saliva has emerged as a potentially ideal diagnostic biofluid for noninvasive testing. In this paper, we present an automated, integrated platform useable by minimally trained personnel in the field for the diagnosis of respiratory diseases using human saliva as a sample specimen. In this platform, a saliva sample is loaded onto a disposable microfluidic chip containing all the necessary reagents and components required for saliva analysis. The chip is then inserted into the automated analyzer, the SDReader, where multiple potential protein biomarkers for respiratory diseases are measured simultaneously using a microsphere-based array via fluorescence sandwich immunoassays. The results are read optically, and the images are analyzed by a custom-designed algorithm. The fully automated assay requires as little as 10 μL of saliva sample, and the results are reported in 70 min. The performance of the platform was characterized by testing protein standard solutions, and the results were comparable to those from the 3.5-h lab bench assay that we have previously reported. The device was also deployed in two clinical environments where 273 human saliva samples collected from different subjects were successfully tested, demonstrating the device’s potential to assist clinicians with the diagnosis of respiratory diseases by providing timely protein biomarker profiling information. This platform, which combines non-invasive sample collection and fully automated analysis, can also be utilized in point-of-care diagnostics
    corecore